
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2010-021 January 29, 2010

The Bayes Tree: Enabling Incremental
Reordering and Fluid Relinearization for
Online Mapping
Michael Kaess, Viorela Ila, Richard Roberts, and
Frank Dellaert

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
29 JAN 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
The Bayes Tree: Enabling Incremental Reordering and Fluid
Relinearization for Online Mapping

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology,Computer Science and Artificial
Intelligence Laboratory,Cambridge,MA,02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In this paper we present a novel data structure, the Bayes tree, which exploits the connections between
graphical model inference and sparse linear algebra. The proposed data structure provides a new
perspective on an entire class of simultaneous localization and mapping (SLAM) algorithms. Similar to a
junction tree, a Bayes tree encodes a factored probability density, but unlike the junction tree it is directed
and maps more naturally to the square root information matrix of the SLAM problem. This makes it
eminently suited to encode the sparse nature of the problem, especially in a smoothing and mapping (SAM)
context. The inherent sparsity of SAM has already been exploited in the literature to produce efficient
solutions in both batch and online mapping. The graphical model perspective allows us to develop a novel
incremental algorithm that seamlessly incorporates reordering and relinearization. This obviates the need
for expensive periodic batch operations from previous approaches, which negatively affect the
performance and detract from the intended online nature of the algorithm. The new method is evaluated
using simulated and real-world datasets in both landmark and pose SLAM settings.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

20

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The Bayes Tree: Enabling Incremental
Reordering and Fluid Relinearization for

Online Mapping

Michael Kaess∗, Viorela Ila†, Richard Roberts†, and Frank Dellaert†
∗CSAIL, Massachusetts Institute of Technology, Cambridge, Massachusetts

†School of Interactive Computing, Georgia Institute of Technology, Atlanta, Georgia
Email: kaess@mit.edu, {vila, richard, frank}@cc.gatech.edu

Abstract

In this paper we present a novel data structure, the Bayes tree, which exploits
the connections between graphical model inference and sparse linear algebra.
The proposed data structure provides a new perspective on an entire class of
simultaneous localization and mapping (SLAM) algorithms. Similar to a junction
tree, a Bayes tree encodes a factored probability density, but unlike the junction
tree it is directed and maps more naturally to the square root information matrix of
the SLAM problem. This makes it eminently suited to encode the sparse nature of
the problem, especially in a smoothing and mapping (SAM) context. The inherent
sparsity of SAM has already been exploited in the literature to produce efficient
solutions in both batch and online mapping. The graphical model perspective
allows us to develop a novel incremental algorithm that seamlessly incorporates
reordering and relinearization. This obviates the need for expensive periodic batch
operations from previous approaches, which negatively affect the performance
and detract from the intended online nature of the algorithm. The new method
is evaluated using simulated and real-world datasets in both landmark and pose
SLAM settings.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) refers to the problem of localizing a
robot while simultaneously mapping its environment. The earliest and most popular SLAM
methods employ the extended Kalman filter (EKF) [35, 28] which recursively estimates
a Gaussian density over the current pose of the robot and the map. The computational
complexity of the EKF becomes intractable fairly quickly, and hence a large number of
efforts have focused on modifying and extending the filtering approach to cope with larger-
scale environments [10, 19, 31, 2, 39, 37, 7]. However, filtering itself has been shown to
be inconsistent when applied to the inherently non-linear SLAM problem [21]. Since this
is mainly due to linearization choices that cannot be undone in a filtering framework, there
has recently been considerable interest in the smoothing version of the SLAM problem
[7, 8, 24].

Smoothing and Mapping (SAM) is the problem of not just estimating the map and
robot’s most current pose, but also the entire robot trajectory up to the current time. This
problem is also referred to as the full SLAM problem by Thrun et al. [40]. Dellaert et

al. [7, 8, 26, 24] have shown how smoothing can be an efficient alternative to filtering-
based methods, as in many cases keeping the trajectory around helps rather than hurts.
The matrices associated with smoothing are typically very sparse, as opposed to the dense
problems one obtains in filtering. Because of this sparsity, one can do much better than the
cubic complexity associated with factorizing a dense matrix [26].

Kaess et al. [23, 24] introduced incremental smoothing and mapping (iSAM), which
performs fast incremental updates of the square root information matrix, yet is able to
compute the full map and trajectory at any time. New measurements are added using
matrix update equations [18], so that previously calculated components of the square root
information matrix are reused. Updating of matrix factorizations is a well-known technique
in other areas, with applications in computer vision [25] and signal processing [29]. Golub
and Loan [18] present general methods for updating matrix factorizations based on [17, 16],
including the Givens rotation method used in iSAM.

However, incremental SAM suffers from two important drawbacks related to variable
reordering and relinearization. First, for trajectories with loops, Kaess et al. [23, 24] need
to perform periodic variable reordering to prevent unnecessary fill-in of the square root
information matrix that would otherwise slow down the algorithm. Second, in non-linear
problems such as SLAM the entire graph has to be periodically relinearized around the latest
estimate to prevent inconsistency. In practice reordering and relinearization are combined
in a periodic “batch reset” of incremental SAM which is expensive and detracts from the
intended online nature of the algorithm.

In this paper we propose a novel data structure, the Bayes tree, and a novel
incremental factorization method which allows for incremental reordering and just-
in-time relinearization. Taking a graphical model perspective of the SLAM problem offers
the possibility of creating more efficient methods to find the optimal map solution given
noisy sensor readings. Looking at SLAM in terms of graphs has a rich history [3] and
has especially lead to several novel and exciting developments in the past few years
[11, 14, 12, 13].

Our approach is based on viewing matrix factorization as eliminating a factor graph into
a Bayes net, which is the graphical model equivalent of the square root information matrix.
Performing marginalization and optimization in Bayes nets is not easy in general. However,
a Bayes net resulting from elimination/factorization is chordal, and it is well know that a
chordal Bayes net can be converted into a tree-structured graphical model in which these
operations are easy. The most well-known such data structure is the clique tree [34, 1], also
known as the junction tree in the AI literature [5], which has already been exploited for
distributed inference in SLAM [9, 31]. However, the new data structure we propose here,
the Bayes tree, is directed and corresponds more naturally to the result of factorization
in linear algebra. Exploiting this new data structure we propose an efficient algorithm for
incremental factorization in on-line mapping.

II. PROBLEM STATEMENT

We use a factor graph [27] to represent the SLAM problem in terms of graphical models.
Formally, a factor graph is a bipartite graph G = (F ,Θ, E) with two node types: factor
nodes fi ∈ F and variable nodes θj ∈ Θ. Edges eij ∈ E are always between factor nodes

2

Figure 1: Factor graph for a small SLAM example, where a robot located at successive
poses x1, x2, and x3 makes observations on landmarks l1 and l2. In addition there is an
absolute measurement on the pose x1.

and variables nodes. A factor graph G defines the factorization of a function f(Θ) as

f(Θ) =
∏

i

fi(Θi) (1)

where Θi is the set of variables θj adjacent to the factor fi, and independence relationships
are encoded by the edges eij: each factor fi is a function of the variables in Θi. An example
is shown in Figure 1.

When assuming Gaussian process and measurement models, as is standard in the SLAM
literature [36, 4, 10], the factored objective function (1) we want to minimize corresponds
to the nonlinear least-squares criterion

log f(Θ) =
1

2

∑
i

‖hi(Θ)− zi‖2 (2)

The individual factors correspond to (a) the motion model,

‖gt(xt−1, ut)− xt‖2
Λt

(3)

where gt(.) is the process model at time t, corrupted by normally distributed zero-mean
process noise with covariance matrix Λt, and (b) the measurement model,

‖htk(xt, ltk)− ztk‖2
Σtk

(4)

where htk(.) is a measurement equation for measurement k at time t, corrupted by normally
distributed zero-mean measurement noise with covariance Σtk. Above ‖e‖2

Σ
∆
= eT Σ−1e is

defined as the squared Mahalanobis distance given a covariance matrix Σ.
A crucial insight is that inference can be understood as converting the factor graph

to a Bayes net using the elimination algorithm. Variable elimination [1, 5] originated in
order to solve systems of linear equations, and was first applied in modern times by Gauss
in the early 1800s [15].

In factor graphs, elimination is done via a bipartite elimination game, as described by
Heggernes and Matstoms [20]. This can be understood as taking apart the factor graph and
transforming it into a Bayes net [33]. One proceeds by eliminating one variable at a time,

3

Figure 2: Bayes net resulting from eliminating the example factor graph in Figure 1 using
the elimination ordering l1, l2, x1, x2, x3. Note the root is shaded darker.

Algorithm 1 Eliminating variable θj from the factor graph.
1) Remove from the factor graph all factors fi(Θi) that are adjacent to θj . Define the

separator Sj as all variables involved in those factors, excluding θj .
2) Form the (unnormalized) joint density fjoint(θj, Sj) =

∏
i fi(Θi) as the product of

those factors.
3) Using the chain rule, factorize the joint density fjoint(θj, Sj) = P (θj|Sj)fnew(Sj).

Add the conditional P (θj|Sj) to the Bayes net and the factor fnew(Sj) back into the
factor graph.

and converting it into a node of the Bayes net, which is gradually built up. After eliminating
each variable, the reduced factor graph defines a density on the remaining variables. The
pseudo-code for eliminating a variable θj is given in Algorithm 1. After eliminating all
variables the Bayes net density is defined by the product of the conditionals produced at
each step:

P (X) =
∏

j

P (θj|Sj) (5)

The result of this process for the example in Figure 1 is shown in Figure 2.

A. Equivalence of Inference in Factor Graphs and QR
In Gaussian factor graphs, elimination is equivalent to sparse QR factorization

of the measurement Jacobian. In practice one always considers a linearized version of
problem (2). If the process models fi and measurement equations hk are non-linear and a
good linearization point is not available, non-linear optimization methods such as Gauss-
Newton iterations or the Levenberg-Marquardt algorithm will solve a succession of linear
approximations to (2) in order to approach the minimum.

At each iteration of the non-linear solver, we linearize around a linearization point Θ0

to get a new, linear least-squares problem in X with the objective function

log f(X) =
1

2
‖AX − b‖2 (6)

4

where A ∈ Rm×n is the measurement Jacobian consisting of m measurement rows and X
is an n-dimensional tangent vector. The matrix A above is a sparse block-matrix, and its
graphical model counterpart is a Gaussian factor graph with exactly the same structure as
the non-linear factor graph. The probability density on X defined by this factor graph is
the normal distribution

P (X) ∝ e− log f(X) = exp

{
−1

2
‖AX − b‖2

}
(7)

In Gaussian factor graphs, the chain rule fjoint(xj, Sj) = P (xj|Sj)fnew(Sj) in step 3
of Algorithm 1 can be implemented using Householder reflections or a Gram-Schmidt
orthogonalization, in which case the entire elimination algorithm is equivalent to QR fac-
torization of the entire measurement matrix A. To see this, note that the factor fjoint(xj, Sj)
for xj ∈ R defines a Gaussian density

fjoint(xj, Sj) ∝ exp

{
−1

2
‖axj + ASSj − b‖2

Σ

}
(8)

where the (dense but small) matrix Aj = [a|AS] is obtained by concatenating the vectors of
partial derivatives of all factors connected to variable xj . The desired conditional P (xj|Sj)
is obtained by evaluating the joint (8) for a fixed value of Sj , yielding

P (xj|Sj) ∝ exp

{
− 1

2σ2
(xj + rSj − d)2

}
(9)

with r ∆
= a†AS and d ∆

= a†b, where a† ∆
=
(
aT Σ−1a

)−1
Σ−1aT is the pseudo-inverse of a, and

the inverse variance σ−2 = aT Σ−1a. The new factor fnew(Sj) is obtained by substituting
xj = d− rSj back into (8):

fnew(Sj) = exp

{
−1

2
‖A′Sj − b′‖2

Σ

}
(10)

where A′ ∆
= AS − ar and b′ ∆

= b− ad. The above is one step of Gram-Schmidt, interpreted
in terms of densities, and the sparse vector r and scalar d can be recognized as specifying a
single joint conditional density in the Bayes net, or alternatively a single row in the sparse
square root information matrix.

III. THE BAYES TREE

The Bayes net resulting from elimination/factorization is chordal, and it can be converted
into a tree-structured graphical model in which optimization and marginalization are easy.
In this paper we introduce a new data structure, the Bayes tree, to better capture the
equivalence with linear algebra and enable new algorithms in recursive estimation. A Bayes
tree is a directed tree where the nodes represent cliques Ck of the underlying chordal Bayes
net. In this respect Bayes trees are similar to clique trees, but a Bayes tree is directed and is
closer to a Bayes net in the way it encodes a factored probability density. In particular, we
define one conditional density P (Fk|Sk) per node, with the separator Sk as the intersection
Ck ∩ Πk of the clique Ck and its parent clique Πk, and the frontal variables Fk as the

5

x2, x3

l1, x1 : x2 l2 : x3

Figure 3: Bayes tree describing the clique structure in the Bayes net from Figure 2. A
Bayes tree is similar to a junction tree, but is better at capturing the formal equivalence
between sparse linear algebra and inference in graphical models.

Algorithm 2 Creating a Bayes tree from the Bayes net that was generated by eliminating
the factor graph.
For each conditional density P (θj|Sj) of the Bayes net, in reverse elimination order:
If no parent (Si = {})

start a new root clique Fr

else
if frontal nodes of parent clique Fp is equal to Si of conditional

insert conditional into clique
else

start new clique

remaining variables, i.e. Fk
∆
= Ck \Sk. We write Ck = Fk : Sk. This leads to the following

expression for the joint density P (Θ) on the variables Θ defined by a Bayes tree,

P (Θ) =
∏

k

P (Fk|Sk) (11)

where for the root Fr the separator is empty, i.e., it is a simple prior P (Fr) on the root
variables.

Every chordal Bayes net can be transformed into a tree by discovering its cliques. Dis-
covering cliques in chordal graphs is done using the maximum cardinality search algorithm
by Tarjan and Yannakakis [38], which proceeds in reverse elimination order to discover
cliques in the Bayes net. The algorithm for converting a Bayes net into a Bayes tree is
summarized in Algorithm 2 and the corresponding Bayes tree for the small SLAM example
in Figure 1 is shown in Figure 3.

IV. BAYES TREES FOR ONLINE MAPPING

In this section we use the Bayes tree in a novel algorithm for optimizing a set of nonlinear
factors that grows over time, which is directly applicable to online mapping. We first present
an algorithm for the case of linear constraints, and show how the Bayes tree is updated with
those new factors. We then discuss how to perform relinearization where needed, a process

6

x2, x3

l1, x1 : x2 l2 : x3

(a)

x1

x2

x3

l1

(b)

x1

x2

x3

l1

(c)

x1, x2, x3

l1 : x1, x2 l2 : x3

(d)

Figure 4: Updating a Bayes tree with a new factor, based on the example in Figure 3.
(a) The affected part of the Bayes tree is highlighted for the case of adding a new factor
between x1 and x3. Note that the right branch is not affected by the change. (b) The factor
graph generated from the affected part of the Bayes tree. (c) The chordal Bayes net resulting
from eliminating the factor graph. (d) The Bayes tree created from the chordal Bayes net,
with the unmodified right branch from (a) added back in.

that we call fluid relinearization. We present a combined algorithm for adding nonlinear
factors over time, while keeping the Bayes tree and the estimate up to date.

Incremental SAM The main technical idea is a new view of incremental factorization
in terms of graphical models. In particular, we will now store and compute the square root
information matrix R in the form of a Bayes tree T . Incremental factorization/inference
can be seen as converting the top part of the Bayes tree back to a factor graph, re-factoring
only that part, and re-constituting the Bayes tree. To understand why only the top part of

7

Algorithm 3 Updating the Bayes tree with new factors F ′.
1) Remove top of Bayes tree and convert to a factor graph:

a) For each affected variable, remove the corresponding clique and all parents up
to the root.

b) Store orphaned sub-trees TO of removed cliques.
2) Add the new factors F ′ into the resulting factor graph
3) Re-order and eliminate the factor graph into a Bayes net (Algorithm 1), and re-

assemble into a new Bayes tree (Algorithm 2)
4) Insert the orphans back into the new Bayes tree.

the Bayes tree is affected, we discuss the case of adding a new measurement represented
by the factor f ′(xj, xj′) between two variables xj and xj′ . A property of the Bayes tree
is that this will only affect the paths between those variables and the root. The sub-trees
below the cliques containing xj and xj′ remain unaffected, as is any sub-tree of the root
not containing xj or xj′ .

Figure 4 (a) shows that adding the new factor between x1 and x3 in the small SLAM
example from Figure 3 only affects the left branch of the tree. It is easy to convert the
affected part of the Bayes tree back to a factor graph, add the new constraint(s), re-order,
and re-eliminate. The unaffected sub-trees can then be reattached to the new Bayes tree.
Figure 4(a)-(d) shows how these steps are applied to the small SLAM example. The entire
process of updating the Bayes tree with a new factor is described by Algorithm 3.

Incremental Reordering Using the Bayes tree structure, reordering can be done at
every incremental update, eliminating the need for periodic batch reordering. This was not
understood in [24], because this is only obvious within the graphical model framework,
but not for matrices. In addition, by maintaining a Bayes tree data structure in an online
mapping framework, we inherit its beneficial properties in terms of marginalization and
optimization, which can both be done in an easy, recursive manner. Optimization starts
at the root and proceeds recursively through the children. Each clique that is visited is
solved by backsubstitution, based on the internal representation arising from incomplete
QR factorization.

Fluid Relinearization The idea behind just-in time or fluid relinearization is very similar
to incremental updates, and indeed we combine both components into one algorithm. We
can keep track of the validity of the linearization point for each variable, and only relinearize
when needed. This represents a departure from the conventional linearize/solve approach
that currently represents the state of the art, and can be viewed as a completely new
algorithm for non-linear optimization.

For incremental updates in the previous section we have removed the affected parts of the
Bayes tree, that were then updated, converted back to a Bayes tree, and combined with the
unmodified sub-trees of the original Bayes tree. For relinearization we can follow much the
same scheme. For a variable that is chosen to be relinearized, all relevant information has
to be removed from the Bayes tree. The original nonlinear factors are then recovered and
linearized at the new linearization point. Then we again follow the same path of updating
with new factors, converting back to a Bayes tree, and finally combining with the orphaned

8

Algorithm 4 Full online mapping algorithm with incremental variable reordering and fluid
relinearization.
Input / output: nonlinear factors F , Linearization point Θ, Bayes tree T , marked variables
J , update XJ

Initialization: F0 = ∅, Θ0 = ∅, T0 = ∅, J0 = ∅
Iterate whenever J 6= ∅ or new factors F ′ available:

1) Update linearization point for marked variables: ΘJ := ΘJ +XJ .
2) Add any new factors F := F ∪ F ′.
3) Initialize any new variables Θnew and add Θ := Θ ∪Θnew.
4) Also mark affected variables J ′ as invalid: J := J ∪ J ′.
5) Remove top plus one layer of children (see text) of Bayes tree T according to J ,

remembering orphaned sub-trees TO and removed conditionals Jremoved.
6) Find all nonlinear factors Fcore = {f ∈ F|var(f) ⊆ Jremoved} that were removed

above.
7) Linearize those factors and add cached factors from orphan roots into Gaussian factor

graph: G = linearize(Fcore,Θ) + cached(T0).
8) Eliminate G and append orphans TO to create a new Bayes tree T according to

Algorithm 2.
9) Obtain X = solve(T , α) by back-substitution with threshold α.

10) Mark variables as invalid if XJ above threshold: J = {x ∈ X|x ≥ β}.

sub-trees.
Algorithm Summary The goal of our algorithm is to obtain an estimate Θ for the map

and trajectory, given a set of nonlinear constraints that expands over time, represented by
nonlinear factors F . New factors F ′ can arrive at any time and may add new variables
Θnew to the estimation problem. We take the most recent estimate Θ as linearization point
to solve a linearized system as subroutine in an iterative nonlinear optimization scheme.
The linearized system is represented by the Bayes tree T . The overall algorithm is shown
in Algorithm 4, and a more detailed explanation follows.

In step 1 we start by updating the linearization point for selected variables, which in the
first iteration will not perform any operation - we will revisit this point at the end. In step
2 we add the new factors F ′ to our existing and initially empty set of factors F , which lists
all nonlinear constraints we have encountered so far. Remembering the original factors F
allows selective relinearization later. In step 3 we initialize any new variables Θnew based
on the current linearization point, as predicted by the first measurement that is applied to
it. The initial estimates are then added to the current linearization point Θ. In step 4 we
mark any variables connected to the new factors as invalid. Some of the variables may
already have been marked as invalid in the previous iteration when the linearization point
has been updated.

In step 5 we remove the cliques corresponding to each invalidated variable J , including
the complete path to the root, which is the same operation as for the linear case in
Algorithm 3. However, this time we also remove each child clique of every removed clique,
as variables to be relinearized can also be part of the child clique (but not further down

9

the chain based on the definition of the clique tree). Overall this leads to the removal of
additional variables beyond the set J , and the full set of removed variables is summarized
in Jremoved. As in the linear update algorithm, we are left with a set of orphaned sub-trees
TO that are not affected by the changes and are remembered for later insertion back into
the modified tree.

In contrast to the linear update algorithm, we cannot reuse the conditional densities that
were removed from the Bayes tree, as they combine various factors, some of which are
invalidated because of a change in linearization point for one of the involved variables. But
how can we restart the elimination in the middle of the tree? From the original factorization
we can see that all factors that only involve variables Jremoved that have been removed must
have been eliminated inside the removed part. We call this set Fremoved, and it is recovered
from the nonlinear factors F in step 6. But what about other factors that contain not only
removed variables? These would have already been combined with other factors during the
elimination process within the children. A summary of these factors is passed into the core
part from the orphaned sub-trees. Those are the new factors fnew in Algorithm 1, that were
created when eliminating the last variable for each of the orphaned sub-trees. Basically,
if we were to re-eliminate all variables in the same order, those same factors would be
passed in again from each orphaned sub-tree. As the orphaned sub-trees are not affected
by our current changes, we can therefore simply cache those factors during elimination
and reuse them now. In step 7 those cached factors are combined with the linearized set
of core factors Fcore in a single Gaussian factor graph G that contains all the information
that was removed in step 5, but now relinearized and updated with the new factors.

In step 8 we create a Bayes tree from the Gaussian factor graph G that contains all
relinearized and new information, using Algorithm 2. The new variable ordering makes
sure that structural changes introduced by the new factors do not lead in larger clique sizes
than necessary. Or in other words, it avoids fill-in in the sparse square root information
matrix represented by the Bayes tree, but without recalculating the complete matrix as was
necessary in previous work. The untouched parts of the original Bayes tree, the orphaned
sub-trees TO get inserted back into the modified core of the Bayes tree. Note that they may
end up in different places than before, because the core was reorganized. The location to
insert an orphaned tree is easy to find, as it is given by the clique corresponding to the
separator variable of the orphaned tree that was eliminated first in the new ordering.

In step 9 we solve the linearized system represented by the Bayes tree in a recursive
fashion. Starting at the root, for which we have all information to recover the solution by
backsubstitution, we proceed recursively through all children. At each point we already
have a solution for the variables in the separator (parents). For large systems it can get
expensive to recover the complete solution. Also, local changes in one part of the map
typically only affect areas nearby, except for loop closings. We therefore stop propagation
into the children once the change in a clique falls below a threshold α.

Relinearizing all variables at each step would result in a batch algorithm, as the complete
system would have to be relinearized and re-eliminated. In step 10 we determine when
a change is significant enough to warrant a relinearization of the corresponding variable,
based on a threshold β. Note that the update X always specifies the deviation of the estimate
from the linearization point. Therefore undetected drifting over time is not possible, instead
the update will eventually reach the threshold and the linearization point is updated. The

10

Figure 5: Manhattan world simulated environment after optimization. Color coded with the
number of variables that are updated for every step along the trajectory. Green corresponds
to a low number of cliques, red to a high number.

actual change in linearization point is deferred to step 1 of the next iteration, so that the
returned Bayes tree T and linearization point Θ are always consistent. Therefore we can
always obtain a solution by adding the current update XJ to the linearization point Θ. We
can also obtain a full solution independent of thresholds by recovering a full update X ,
albeit at a higher cost.

V. EXPERIMENTAL RESULTS

This section describes the experiments that validate the presented approach, first using a
synthetic dataset for which ground truth is available to evaluate the quality of the resulting
map, and then using two publicly available real datasets. We compared our estimation and
timing results with the state of the art incremental method in the literature [24] in order to
highlight the advantages of fluid relinearization and incremental reordering. We used the
column approximate minimum degree ordering (COLAMD) algorithm by Davis et al. [6].
The results are obtained with a C++ implementation running under Mac OS X on an Intel
Core 2 at 2.4 GHz.

We have evaluated our algorithm on the Manhattan world from [30], courtesy of E. Olson.
Using this simulated dataset, the quality of the estimated map is easy to appreciate, and,
since the ground truth is available, adequate metrics are used to analyze the quality of
the resulting map. We achieve the same final normalized chi-square value as the original
algorithm, but intermediate results are often better due to more frequent updating of the
linearization. Figure 5 shows the estimated trajectory for the simulated Manhattan world.
The trajectory is colorized by the number of variables that had to be recalculated at that
step, where green represents a small number of variables (order of 10), yellow a moderate
number, and red finally a large number (order of hundreds of variables).

11

Figure 6: The Victoria Park dataset color coded with the number of variables that are
updated for every step along the trajectory. Green corresponds to a low number of cliques,
red to a high number.

We also applied our Bayes tree algorithm to the Victoria Park dataset, an often used
benchmark SLAM dataset [24, 32] courtesy of E. Nebot and H. Durrant-Whyte. This dataset
includes about 6900 laser scans with the corresponding odometry readings. The laser scans
are processed to detect the trunks of the trees in the park, which are used as landmarks.
Figure 6 shows the final trajectory estimate together with the detected landmarks, again
using the same color coding for the number of variables that had to be recalculated in
each step. A relatively small portion of the trajectory is colorized in intense red, mainly
the part at the bottom where the vehicle closed loops multiple times, visiting the same
location up to eight times. We finally also present results for the Intel dataset, courtesy of

12

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500 3000 3500

T
im

e
(s

)

Time step

Manhattan

iSAM
BayesTree

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0 500 1000 1500 2000 2500 3000 3500

T
im

e
(s

)
-

lo
g
 s

ca
le

Time step

Manhattan

iSAM
BayesTree

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000 6000 7000

T
im

e
(s

)

Time step

Victoria Park

iSAM
BayesTree

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

 0 1000 2000 3000 4000 5000 6000 7000

T
im

e
(s

)
-

lo
g
 s

ca
le

Time step

Victoria Park

iSAM
BayesTree

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(s

)

Time step

Intel

iSAM
BayesTree

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(s

)
-

lo
g
 s

ca
le

Time step

Intel

iSAM
BayesTree

Figure 7: Timing comparison between our new algorithm (red) and the original iSAM
algorithm (blue). The horizontal axis shows the step number, the vertical axis the time in
seconds. The top row shows results for the Manhattan world data, the center row for the
Victoria Park dataset and the bottom row for the Intel dataset. For each row, the same data
are shown in linear scale on the left and log scale on the right. The original iSAM algorithm
included a batch step every 100 iterations, which is clearly visible from the spikes.

13

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500

C
u
m

u
la

ti
v
e

ti
m

e
(s

)

Time step

Manhattan

iSAM
BayesTree

 0

 100

 200

 300

 400

 500

 600

 700

 0 1000 2000 3000 4000 5000 6000 7000

C
u
m

u
la

ti
v
e

ti
m

e
(s

)

Time step

Victoria Park

iSAM
BayesTree

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000 3500 4000

C
u
m

u
la

ti
v
e

ti
m

e
(s

)

Time step

Intel

iSAM
BayesTree

Figure 8: Cumulative time comparison for all three datasets. For two out of the three
datasets our new algorithm provides an improvement in speed, in addition to its advantages
of eliminating periodic batch operations and performing fluid relinearization.

14

Figure 9: Illustration of the proposed novel graph-based incremental SAM algorithm on
part of the Victoria Park data-set. The red nodes indicate which variables were affected by
new measurement constraints at each iteration, and represent the subset of the factor graph
that needs to be re-factorized. At times of loop closing (bottom center figure), larger parts
of the trajectory might have to be recalculated. The number of affected variables for the
complete dataset is shown by color coding in Figure 6.

D. Haehnel and D. Fox. This dataset was preprocessed by laser scan-matching, resulting
in a pose graph formulation without landmarks, including about 4000 poses.

In Figure 7, we compare timing for both datasets between our algorithm and an imple-
mentation of the original incremental SAM algorithm [24]. The results show that our fully
incremental algorithm does not suffer from the spikes caused by the batch relinearization
step. Our algorithm also performs better in terms of cumulative time for two out of the three
datasets, as shown in Figure 8, while providing the additional advantage of continuously
updating the linearization point of all variables with significant changes. Further insights
into the algorithm are provided by Figure 9, that shows the parts of the trajectory that are
updated for select frames at the beginning of the Victoria Park sequence.

VI. CONCLUSION

We have presented a novel data structure, the Bayes tree, that provides new insights into
previous online mapping algorithms based on sparse linear algebra. The graphical model
perspective and insights in its detailed connection to linear algebra have lead us to a fully
incremental algorithm that performs incremental variable reordering just-in-time, as well
as selective relinearization. Our novel graph-based algorithm should also allow for better
insights into the recovery of marginal covariances, as we believe that simple recursive
algorithms in terms of the Bayes tree are formally equivalent to the dynamic programming
methods described in [22]. The graph based structure also provides a starting point for
exploiting parallelization that is becoming available in newer processors.

ACKNOWLEDGEMENTS

This work was partially funded under NSF grant 0713162 (RI: Inference in Large-Scale
Graphical Models) and under ONR grant N00014-06-1-0043. The first author would like
to thank J. Leonard for his generous support of this work.

15

REFERENCES

[1] J. Blair and B. Peyton. An introduction to chordal graphs and clique trees. In J. George,
J. Gilbert, and J.-H. Liu, editors, Graph Theory and Sparse Matrix Computations,
volume 56 of IMA Volumes in Mathematics and its Applications, pages 1–27. Springer-
Verlag, New York, 1993.

[2] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller. An Atlas
framework for scalable mapping. In IEEE Intl. Conf. on Robotics and Automation
(ICRA), pages 1899–1906, Sep 2003.

[3] R. Brooks. Visual map making for a mobile robot. In IEEE Intl. Conf. on Robotics
and Automation (ICRA), volume 2, pages 824 – 829, March 1985.

[4] J. Castellanos, J. Montiel, J. Neira, and J. Tardós. The SPmap: A probabilistic
framework for simultaneous localization and map building. IEEE Trans. Robot.
Automat., 15(5):948–953, 1999.

[5] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic
Networks and Expert Systems. Statistics for Engineering and Information Science.
Springer-Verlag, 1999.

[6] T. Davis, J. Gilbert, S. Larimore, and E. Ng. A column approximate minimum degree
ordering algorithm. ACM Trans. Math. Softw., 30(3):353–376, 2004. ISSN 0098-3500.

[7] F. Dellaert. Square Root SAM: Simultaneous location and mapping via square root
information smoothing. In Robotics: Science and Systems (RSS), 2005.

[8] F. Dellaert and M. Kaess. Square Root SAM: Simultaneous localization and mapping
via square root information smoothing. Intl. J. of Robotics Research, 25(12):1181–
1203, Dec 2006.

[9] F. Dellaert, A. Kipp, and P. Krauthausen. A multifrontal QR factorization approach to
distributed inference applied to multi-robot localization and mapping. In Proc. 22nd

AAAI National Conference on AI, Pittsburgh, PA, 2005.
[10] M. Dissanayake, P. Newman, H. Durrant-Whyte, S. Clark, and M. Csorba. A solution

to the simultaneous localization and map building (SLAM) problem. IEEE Trans.
Robot. Automat., 17(3):229–241, 2001.

[11] J. Folkesson and H. Christensen. Graphical SLAM - a self-correcting map. In IEEE
Intl. Conf. on Robotics and Automation (ICRA), volume 1, pages 383–390, 2004.

[12] J. Folkesson, P. Jensfelt, and H. Christensen. Graphical SLAM using vision and the
measurement subspace. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), Aug 2005.

[13] U. Frese. Treemap: An O(log n) algorithm for indoor simultaneous localization and
mapping. Autonomous Robots, 21(2):103–122, 2006.

[14] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm for simulta-
neous localisation and mapping. IEEE Trans. Robotics, 21(2):196–207, April 2005.

[15] C. Gauss. Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem
Mabientium [Theory of the Motion of the heavenly Bodies Moving about the Sun in
Conic Sections]. Perthes and Besser, Hamburg, Germany, 1809. English translation
available at http://name.umdl.umich.edu/AGG8895.0001.001.

[16] W. Gentleman. Least squares computations by Givens transformations without square
roots. IMA J. of Appl. Math., 12:329–336, 1973.

16

[17] P. Gill, G. Golub, W. Murray, and M. Saunders. Methods for modifying matrix
factorizations. Mathematics and Computation, 28(126):505–535, 1974.

[18] G. Golub and C. V. Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, third edition, 1996.

[19] J. Guivant and E. Nebot. Optimization of the simultaneous localization and map
building algorithm for real time implementation. IEEE Trans. Robot. Automat., 17
(3):242–257, June 2001.

[20] P. Heggernes and P. Matstoms. Finding good column orderings for sparse QR
factorization. In Second SIAM Conference on Sparse Matrices, 1996.

[21] S. Julier and J. Uhlmann. A counter example to the theory of simultaneous localization
and map building. In IEEE Intl. Conf. on Robotics and Automation (ICRA), volume 4,
pages 4238–4243, 2001.

[22] M. Kaess and F. Dellaert. Covariance recovery from a square root information matrix
for data association. Journal of Robotics and Autonomous Systems, 57:1198–1210,
Dec 2009. doi: 10.1016/j.robot.2009.06.008.

[23] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Fast incremental smoothing
and mapping with efficient data association. In IEEE Intl. Conf. on Robotics and
Automation (ICRA), pages 1670–1677, Rome, Italy, April 2007.

[24] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing and
mapping. IEEE Trans. Robotics, 24(6):1365–1378, Dec 2008.

[25] Z. Khan, T. Balch, and F. Dellaert. MCMC data association and sparse factorization
updating for real time multitarget tracking with merged and multiple measurements.
IEEE Trans. Pattern Anal. Machine Intell., 28(12):1960–1972, December 2006.

[26] P. Krauthausen, F. Dellaert, and A. Kipp. Exploiting locality by nested dissection for
square root smoothing and mapping. In Robotics: Science and Systems (RSS), 2006.

[27] F. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs and the sum-product
algorithm. IEEE Trans. Inform. Theory, 47(2), February 2001.

[28] J. Leonard, H. Durrant-Whyte, and I. Cox. Dynamic map building for an autonomous
mobile robot. Intl. J. of Robotics Research, 11(4):286–289, 1992.

[29] F. Ling. Givens rotation based least squares lattice related algorithms. IEEE Trans.
Signal Processing, 39(7):1541–1551, Jul 1991.

[30] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose graphs with poor
initial estimates. In IEEE Intl. Conf. on Robotics and Automation (ICRA), May 2006.

[31] M. Paskin. Thin junction tree filters for simultaneous localization and mapping. In
Intl. Joint Conf. on AI (IJCAI), 2003.

[32] L. M. Paz, P. Pinies, J. D. Tardós, and J. Neira. Large scale 6DOF SLAM with
stereo-in-hand. IEEE Transactions on Robotics, 24(5):946–957, 2008.

[33] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

[34] A. Pothen and C. Sun. Distributed multifrontal factorization using clique trees. In
Proc. of the Fifth SIAM Conf. on Parallel Processing for Scientific Computing, pages
34–40. Society for Industrial and Applied Mathematics, 1992.

[35] R. Smith, M. Self, and P. Cheeseman. A stochastic map for uncertain spatial
relationships. In Int. Symp on Robotics Research, 1987.

17

[36] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in
Robotics. In I. Cox and G. Wilfong, editors, Autonomous Robot Vehicles, pages 167–
193. Springer-Verlag, 1990.

[37] J. Tardós, J. Neira, P. Newman, and J. Leonard. Robust mapping and localization in
indoor environments using sonar data. Intl. J. of Robotics Research, 21(4):311–330,
2002.

[38] R. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs.
SIAM J. Comput., 13(3):566–579, 1984.

[39] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-Whyte. Simul-
taneous localization and mapping with sparse extended information filters. Intl. J. of
Robotics Research, 23(7-8):693–716, 2004.

[40] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT press, Cambridge,
MA, 2005.

18

